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(3) 713–720, 1997.—In clinical studies and animal
models, there is evidence that nicotine exposure during gestation can result in deficits in cognitive performance. The present
study examined the effects of two doses of neonatal nicotine exposure on adult brain activity as assessed by the N1 and P3
components of the event-related potential (ERP) and background electroencephalography (EEG). Nicotine (0 mg, 1 mg/kg/
day, 4 mg/kg/day) was administered to neonatal rat pups from postnatal day 4 (PN4) through PN12 with an artificial rearing
paradigm; suckled rats served as additional control subjects. Nicotine exposure was specifically found to alter responses of the
P3 component of the ERP, recorded in dorsal hippocampus, to changes in stimulus parameters. A significant reduction in the
response of the P3A component to the noise tone as compared with the level of the frequently presented tone was found. A
significant reduction in the response to the noise tone as compared with the level of the infrequently presented tone also was
seen in the P3B component. No effects of drug exposure were found on the N1 component in any lead, although artificial
rearing produced specific effects on the latency of the N1 component in cortex. No significant differences among treatment
groups were found on any of the EEG-dependent variables. Female rats overall were found to have significantly higher EEG
amplitudes than the males, a finding previously reported in our laboratory. However, no overall effects of gender were found
on any ERP component. These studies suggest that neonatal nicotine exposure specifically reduces the electrophysiological
response of the hippocampus to changes in auditory stimuli. Additional studies will be necessary to link these P3 amplitude
changes to the effects of nicotine on the developing brain in human and animal subjects. © 1997 Elsevier Science Inc.
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FROM the turn of the century, there have been reports that
exposure to tobacco and cigarette smoke might be detrimen-
tal to fetal development [see (20)]. Since that time, numerous
epidemiological studies have been conducted [see reviews in
(32,35,41,58)], and there appears to be a consensus on many
of the effects of prenatal nicotine exposure, although the in-
terpretation of these data as to causality is still controversial.
In general, most studies have reported that smoking during
pregnancy results in intrauterine growth retardation, an in-
creased frequency of spontaneous abortion, an increased inci-
dence of still births and neonatal deaths and infants of smaller
size and birth weight.

More recently, there has been a specific focus on identify-
ing possible effects of smoking on the developing brain. Al-
though congenital anomalies can only be demonstrated in
very large population samples (40), more subtle effects of ma-
ternal smoking on brain function have been demonstrated in
smaller clinical studies (53). Maternal smoking may increase

the incidence of hyperkinesis (7) and minimal cerebral dysfunc-
tion (12). However, other well-controlled studies have failed to
detect any significant difference in intellectual functioning in
offspring of maternal smokers vs. offspring of maternal non-
smokers (22).

Although these studies in humans suggest that maternal
smoking may have adverse developmental effects on the central
nervous system in some populations, it is difficult to control
for a myriad of potential causal factors in human studies.
However, many of the characteristics associated with fetal to-
bacco exposure in humans, such as reduced birth weight and
perinatal mortality, also occurs in animal models [see (3,4,31,
45,56,57,59)]. For instance, prenatal nicotine or tobacco expo-
sure in rodents produces increased spontaneous motor activ-
ity (45,47); poor performance on fixed-ratio, variable interval
discrimination and discrimination reversal (36); an acceler-
ated rate of the acquisition of avoidance (5); impairments of
performance in the radial-arm maze (61); and reduced sponta-
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neous alternation, neophobia and deficiencies on brightness
discrimination (27) and swimming development (44).

Brain impairment produced by prenatal nicotine exposure
also may have a regional selectivity that reflects the timetable
of cellular development of specific brain regions. For instance,
in one study, the most profound effects were seen in late-de-
veloping brain regions, and intermediate effects were found in
earlier developing areas (59). Unfortunately, few studies have
focused on nicotine exposure during the early neonatal period
in the rat, the time period equivalent to the third trimester of
pregnancy in humans [see (8,9)].

The present study utilized electrophysiological techniques
[electroencephalography (EEG) and event-related potentials
(ERPs)] to assess brain function in adult rats exposed to nico-
tine during the early neonatal period. We previously demon-
strated that ERP paradigms are particularly sensitive to the
effects of perinatal drug exposure in both humans and animal
models [see (28,29)]. However, to date few investigators have
obtained electrophysiological recordings in either humans or
animals exposed to nicotine perinatally.

 

MATERIAL AND METHODS

 

Subjects

 

Ninety-nine male and female Sprague–Dawley rats served
as subjects for electrophysiological experiments. These ani-
mals had either been artificially reared from postnatal day 4
(PN4) through PN12 or suckled normally. The rats were ap-
proximately 175 days old (range 
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 164–213 days) at the time
of electrode implantation and weighed 450–630 g. Rats were
housed in pairs in a temperature-controlled room and main-
tained on a 12-h light–dark cycle with lights on at 0600 and
lights off at 1800. Unlimited food and water were available
throughout the entire study.

 

Mating Procedures

 

The general procedure for artificial rearing has been de-
scribed in detail elsewhere (21,37,38,39). Briefly, parent ani-
mals were Sprague–Dawley rats obtained from Charles River,
Inc. Upon arrival, females were group housed and maintained
on a 12-h light–dark cycle in a humidity- and temperature-
controlled colony room. Following a 1-week acclimation pe-
riod, female rats (approximately 240 g) were individually
placed with males for mating in the late afternoon and were
examined the next morning for the presence of a seminal
plug, an indication that copulation had occurred. Pregnant fe-
males were then individually housed in a temperature- (70
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C)
and humidity- (40–60%) controlled room maintained exclu-
sively as a nursery.

 

Perinatal Treatments

 

Twenty-four hours after the Sprague–Dawley females gave
birth, the litters were weighed, examined for any obvious
physical anomalies and culled to the five largest intact males
and the five largest intact females. On PN4, pups were ran-
domly assigned to one of four groups: artificially reared (0
nicotine), nicotine 1 mg/kg/day, nicotine 4 mg/kg/day and the
suckle control group. For nicotine exposure, nicotine hydro-
gen-tartrate (Sigma) was dissolved in distilled water and
added to the milk diet. Pups were exposed to nicotine for four
consecutive feedings each day from PN4 to PN9. An equal
volume of distilled water was added to the diet of the 0-mg-
nicotine controls.

To accomplish the artificial rearing, anesthetized pups
(50% halothane and 50% oxygen) were surgically implanted
with a miniature intragastric feeding tube. This procedure has
been described in detail elsewhere (1,2,38,39). Following gas-
trostomy, each artificially reared pup was housed individually
with a small piece of artificial fur in a plastic cup filled with
wood chips and covered with a perforated plastic lid. This cup
was then placed in a ballasted cup floating in a tank filled with
heated, aerated water (38
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C). Intragastric feeding tubes were
connected to syringes containing special rat milk formula [see
(39)]. The feeding syringes were housed in infusion pumps
controlled by a programmable timer to infuse the formula for
20 min every 2 h. Thus, artificially reared animals received liq-
uid diet during 12 feeding periods every day. The volume of
diet infused per day was calculated to be 33% of the animal’s
mean body weight. This regimen has been used in several
other studies (2,65). The syringes and feeding tubes were
cleaned daily while each animal had its anal/genital region
lightly stroked with a cotton swab to stimulate urination and
defecation twice a day. Gastrostomized animals were main-
tained under these conditions from PN4 to PN11 (or gesta-
tional days 26 to 34).

Following the artificial rearing period, the pups were
bathed in a slurry of feces and water before being placed with
surrogate dams. This procedure virtually eliminated rejection
by the dam, and the pups were seen to nurse soon after their
return to the dam. Animals assigned to the suckle control
group underwent a sham gastrostomy procedure (also on PN4)
in which the pups were anesthetized and a feeding tube was
passed down the esophagus and then withdrawn. Following
the sham operation, the pups were also placed with surrogate
dams. All rats were weaned at PN21 and housed in pairs.
Thirty-one suckle controls (17 males, 14 females), 23 artifi-
cially reared rats (14 males, 9 females), 22 1 mg/kg/day rats
(12 males, 10 females), and 23 4 mg/kg/day animals (16 males,
7 females) were used in this study.

 

Surgical Procedures for Electrophysiological Recordings

 

Two to three weeks prior to the electrophysiological re-
cordings, the rats were surgically implanted with recording
electrodes. Screw electrodes were placed in the calvarium
overlying the right frontal and left frontal cortex. A grounded
“reference” screw electrode also was placed in the thick bony
area of the calvarium 3 mm posterior to lambda, which lies
parallel to the cerebellum. Rats were anesthetized (Nembutal,
50 mg/kg interperitoneally) and placed in a stereotaxic appa-
ratus with the toothbar set at 
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5.0, and stainless steel bipolar
electrodes were aimed at the dorsal hippocampus (AP 
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3.0,
ML 
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3.0, DV 
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3.0) and amygdala (AP 
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1.0, ML 
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5.3., DV
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8.5 (46). In all animals, electrode connections were made to
a multipin (Amphenol) connector, and the entire assembly
was anchored to the skull with dental acrylic.

 

Electrophysiological Measures

 

All recordings were obtained at least 2 weeks after surgery
to allow for recovery. These data were collected from 0900 to
1400 in their own housing cage, which was placed in an electri-
cally shielded light-, sound- and temperature-controlled BRS/
LVE recording chamber. Female rats were run only during di-
estrous as verified by vaginal smears. Prior to the test day,
each rat was habituated to the cable connection and chamber
for 0.5 h on 2 nonconsecutive days and again for 1 h immedi-
ately prior to recording on the test day. At both habituation
and recording periods, neither food nor water was available.
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For recordings, pairs of cagemates were hooked to separate
recording cables in their home cage such that they were able
to move freely but not interact with each other. This proce-
dure was used to maintain the recording environment as simi-
lar as possible to the housing environment to obtain a repre-
sentative recording of the EEG.

 

EEG.  

 

On test days, rats in their housing cage were placed
in the recording chamber, and a connector attached to a mi-
crodot cable was used to transfer the monopolar (referred to
the lambda ground screw) EEG signals to a polygraph. Forty
minutes of EEG were obtained from the frontal cortex and
dorsal hippocampus. EEG signals were recorded on a Grass
polygraph, amplified with a bandpass of 1–75 Hz and then
transferred to a Vetter Model D recorder for off-line analysis.
For quantification of the EEG, the 40 min of EEG were digi-
tized (128 Hz). The power spectra of continuous 4-s epochs
were determined for a 1–50-Hz range. The Fourier-trans-
formed data were then further compressed into 8 frequency
bands (1–2, 2–4, 4–6, 6–8, 8–16, 16–32, 32–64, 1–64 Hz). Mean
power density was calculated for each band.

 

ERPs.  

 

ERPs were recorded immediately following the
EEG recording. Free field auditory stimuli were presented
through a small speaker centered approximately 20 cm above
the rat’s head. EEG signals were recorded on a Grass poly-
graph, amplified with a bandpass of 0.3–35 Hz and then trans-
ferred to a Macintosh computer. ERPs were elicited by an
acoustic oddball paradigm. The tones utilized were generated
by a programmable multiple-tone generator, the characteris-
tics of which have been described previously (51). The acous-
tic parameters were three tones (rise and fall times 
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 1 ms): a
frequently presented tone (20 ms, 1 kHz, 70 dB SPL) pre-
sented on 84% of the trials, a rare tone (20 ms, 2 kHz, 85 dB
SPL) presented on 10% of the trials and a noise tone pre-
sented on 6% of the trials (20 ms, noise, 100 dB SPL). Rare
tones were interspersed with standards so that no two rare
tones occurred successively. The noise tone occurred every
16th trial. The digitizing epoch for each trial was 1 s, and a
variable 0.5–1-s intertrial interval was used to reduce habitua-
tion. There was a total of 312 trials in a recording session.

ERP trials were digitized at a rate of 256 Hz and analyzed.
The ERP components were quantified by computer by identi-
fying a peak amplitude (baseline to peak) within a standard
latency range. The baseline was determined by averaging the
100 ms of prestimulus activity obtained for each trial. Laten-
cies and amplitudes were calculated for each of the ERP com-
ponents of each brain site recorded. The latency from a com-
ponent was defined as the time of occurrence of the peak
amplitude after the stimulus within a latency window. The la-
tency windows were: frontal cortex, N1: 50–1502; dorsal hip-
pocampus, N1: 25–75, P3A, 220–285, P3B, 290–400; amygdala,
N1, 50–100, P3A, 220–290; P3B, 290–400. Components were
initially identified by visual inspection of the data and then
standardized to allow for computer-automated peak determi-
nations. Components were labeled solely by their polarities
and latency positions relative to each other. Trials containing
excessive movement artifact were eliminated (

 

,

 

10% of the
trials) prior to averaging. To eliminate individual trials in
which the EEG exceeded 
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250 V, an artifact-rejection pro-
gram was utilized. These ERP analyses have been described
previously (14–16,18).

An analysis of variance (ANOVA), with gender and peri-
natal treatment (artificial rearing vs. suckle controls and 1 vs.
4 mg/kg/day nicotine) as the between-subjects variables were
used to evaluate body weight, EEG mean power and ERP la-
tency. Amplitudes of the ERP components were evaluated by

ANOVA by comparing the amplitude differences obtained
between the three tones. Tukey HSD post hoc analyses were
used to identify group differences.

 

RESULTS

 

Body Weight Gain

 

All groups gained weight over the study period. A repeated
measures ANOVA with group and sex as between-subject
variables and day as the repeated measure was conducted on
the data from animals that completed the artificial rearing pe-
riod. A significant group 
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 0.001] and a main effect of group [
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0.001] and day [
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(7, 910) 
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 2350, 
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 0.001] were found. In
addition, males were significantly heavier than females, pro-
ducing a main effect of sex [
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(1, 130) 
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 4.9, 

 

p

 

 

 

,

 

 0.001]. No
group differences were found until PN8, when all the artifi-
cially reared groups (0 mg, 1 mg/kg/day, 4 mg/kg/day) began
to lag in growth as compared with the suckled control rats
(Tukey HSD, 

 

p

 

 

 

,

 

 0.05). However, no significant differences
in body weight were found between the artificially reared
groups. Evaluation of the body weights at the time of implant
surgery and the electrophysiology experiments revealed that,
although the males were still heavier than the females, there
was no significant main effect for group throughout the entire
period of the adult study across the artificially reared and
suckle control animals and any of the nicotine treatments
(Fig. 1).

 

ERP Findings

 

The presentation of auditory stimuli in the form of infre-
quently and frequently presented tones produced a series of
waves that could be averaged from the EEG. In response to
the tones, the anterior cortex displayed a negative wave (N1)
that had a mean latency of 70–90 ms. A negative wave with a
mean latency of 50–70 ms in the dorsal hippocampus and a
negative wave at 60–90 ms in amygdala also were present.
Both dorsal hippocampus and amygdala also showed a late
positive component complex with two peaks designated as
P3A (220–290 ms) and P3B (290–390 ms). The ERP compo-
nents recorded in this study were substantially similar to those
reported previously [see (18)].

No overall effects of gender were found on any ERP com-
ponent. Artificial rearing produced specific effects on the la-
tency of the N1 component in cortex. Artificially reared (AR)
rats had significantly longer N1 latencies in cortex [sham 
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 0.01; Tukey HSD, 
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 0.01] in response to the infre-
quently presented tone and shorter N1 latencies in Dorsal
Hippocampus (DHPC) to the frequently presented tone
[sham 
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 50.9 
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 2.18, AR 
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 41.27 
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 2.15; ANOVA, 
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(3, 95) 
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4.123, 
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 0.009; Tukey HSD, 

 

p

 

 

 

,

 

 0.01]. No effects of drug ex-
posure were found on the N1 component in any lead.

Nicotine exposure more specifically altered responses of
the P3 component, recorded in DHPC, to changes in stimu-
lus parameters (Fig. 2). Because no effect of rearing condi-
tion was found for P3, post hoc analyses were collapsed over
rearing condition. A significant reduction in the response of
the P3A component to the noise tone as compared with the
level of the frequently presented tone was seen in nicotine-ex-
posed rats (Fig. 3) [ANOVA, 
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(3, 95) 
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 4.6, 

 

p

 

 

 

,

 

 0.01; Tukey
HSD, control vs. 4 mg nicotine 

 

p

 

 

 

,

 

 0.009]. A trend toward sig-
nificance was found in the response of the P3A component
difference between the infrequently presented tone and the
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noise tone [ANOVA, 
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(3, 95) 
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 0.09; Tukey HSD,
control vs. 4 mg nicotine 
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 0.1; control vs. 1 mg nicotine 

 

p

 

 

 

,

 

0.2]. A reduction in response to the P3B component in DHPC
in response to nicotine exposure also was seen (Fig. 3). A sig-
nificant reduction in the response of the noise tone as com-
pared with the level of the infrequently presented tone was
seen [ANOVA, 
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(3, 95) 
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 3.1, 

 

p

 

 

 

,

 

 0.05; Tukey HSD, control
vs. 1 mg nicotine 

 

p

 

 

 

,

 

 0.05].

 

EEG Findings

 

Female rats overall were found to have higher EEG ampli-
tudes than the males and significantly higher amplitudes in the
DHPC [1–64 Hz; males 
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 7.23, 
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 0.008], a finding
previously reported in our laboratory (17). However, there
were no significant differences found between treatment
groups on any EEG-dependent variable (i.e., mean power
density for any of the frequency bands) evaluated in any re-
cording site (Fig. 4).

 

DISCUSSION

 

The ERPs have been utilized to assess neuronal circuitry,
sensory integrity and information processing (33,34,50). The
recording of ERPs represents a potentially valuable assess-
ment tool for evaluating the consequences of perinatal experi-
ence on brain and behavior. Studies in rats have demon-
strated that several ERP components can be identified that
resemble those observed in human subjects using passive au-
ditory stimulus paradigms (15,16,18,19,66). Studies evaluating
the response of P3 to differences in stimuli have suggested
that at least two “types” or components of the P3 can be re-
corded from the cortical surface. P3s that are generated by
stimuli that are task relevant and correctly detected by the
subject appear to be of maximal voltage over parietal cortex
and have been designated the “target P3” or P3b, whereas
nontarget stimuli that are “unexpected” or “novel” but re-

FIG. 1. Effects of rearing condition [suckled control vs. artificially
reared (0 mg nicotine)] and nicotine exposure (1 vs. 4 mg/kg/day) on
the body weights of the animals over the time of perinatal exposure
and as adults. Suckled control rats had significant differences in body
weight from the artificially reared rats (0 mg, 1 mg/kg/day, 4 mg/kg/
day) from PN8 to PN11; no differences were found between artificially
reared groups (Tukey HSD, p , 0.05). No significant differences in
body weight were found across groups in the adult animals.

FIG. 2. Effects of nicotine exposure on grouped ERP responses
(grand averages) to changes in stimulus parameters in control
animals (top) and those that ingested 1 (middle) or 4 (bottom) mg/kg/
day nicotine. Location of the P3A and P3B components are indicated.
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quire no behavioral response appear to generate an earlier la-
tency potential that may be more frontocentral in origin, des-
ignated the “novelty P3” or P3a [see (48,50)].

Nicotine exposure during the neonatal period specifically
affected the P3 component of the ERP in the dorsal hippoc-
ampus of adult rats. Significant reductions in overall response
of the rat P3A and P3B components to changes in stimulus
parameters were noted in nicotine-exposed rats, although the
reduction was not necessarily dose related. In humans, the P3
component may reflect stimulus evaluation and memory func-
tion [see (10,64)]. Stimulus probability also alters ERP com-
ponents in humans (48,49,54) and rats (16,18). For instance, a
decrease in the probability of a stimulus increases P3 ampli-
tude (11,63). In the present study, the noise burst stimuli are
presented less frequently and are louder than the infrequent
tone or frequently presented tone. We hypothesized that ERP

components in response to the noise burst would have higher
amplitudes than those in response to the infrequent or fre-
quent tone. For control rats, a significant increase in P300 am-
plitude in response to the noise burst was found when com-
pared with responses to the infrequent tone. However, in
nicotine-exposed rats, only slight increases in P300 amplitude
were seen.

The N1 ERP component is a negative peak occurring ap-
proximately 100 ms after the onset of the stimulus. In humans,
it has been called an “attention-related component,” as sug-
gested by the fact that its amplitude increases when the sub-
ject “attends” to a tone (23,24). An auditory oddball passive
ERP paradigm was used in the present study to evaluate the
effects of neonatal nicotine exposure on ERP components re-
corded in adult rats. Artificially reared rats displayed longer
N1 latencies to infrequently presented tones than the suckle

FIG. 3. Effects of nicotine exposure (1 vs. 4 mg/kg/day) on response of the P3A and P3B components to differences in stimulus parameters
(e.g., noise tone vs. infrequently presented tone and noise tone vs. frequently presented tone). *A significant reduction in the response of the
P3A component to the noise tone as compared with the level of the frequently presented tone was seen in nicotine-exposed rats [ANOVA,
F(3, 95) 5 4.6, p , 0.01; Tukey HSD, control vs. 4 mg nicotine p , 0.009]. 1A trend toward significance was found in the response of the P3A
component difference between the infrequently presented tone and the noise tone [ANOVA, F(3, 95) 5 2.2, p , 0.09; Tukey HSD, control vs.
4 mg nicotine p , 0.1, control vs. 1 mg nicotine p , 0.2]. *A significant reduction in the response of the noise tone as compared with the level
of the infrequently presented tone was seen in the P3B component [ANOVA, F(3, 95) 5 3.1, p , 0.05; Tukey HSD, control vs. 1 mg nicotine
p , 0.05].



 

718 EHLERS ET AL.

control rats in the cortex and shorter latencies to frequently
presented tones in hippocampus. Increases in the latency of
the N1 component has been described in artificial-rearing par-
adigms [see (29)]. Altered latencies of the N1 ERP compo-
nent suggest that attentional processing may be an important
variable associated with early rearing conditions.

The ERPs have not been recorded previously in humans or
animals following perinatal nicotine exposure, making inter-
pretation of the present data more difficult. A study evaluat-
ing nicotine effects on the neonatal auditory system demon-

strated in a small sample of children that nicotine did not
negatively affect maturation or the integrity of the neonatal
auditory brainstem tract responses, and it was not associated
with hearing loss in the neonate (62). ERPs have been re-
corded in children diagnosed with fetal alcohol syndrome
(FAS) [see (29)]. In that study, children with FAS, like the
subjects in the present study, also showed reduced P3 re-
sponse to a noise tone with the identical passive ERP para-
digm. Whether the children with FAS evaluated by Kaneko et
al. (29) also were exposed to nicotine perinatally is not
known, but alcoholics in general high comorbid rates of nico-
tine dependence (26). Further studies will be necessary to link
P3 amplitude changes to the effects of nicotine on the devel-
oping brain in human and animal subjects.

In the present study, no differences in EEG spectral pa-
rameters were found as a function of rearing condition or
when control animals were compared with animals exposed to
neonatal nicotine. Previous findings have suggested that the
normal sleep–wake cycle pattern of the rat pup is maintained
by the rhythmicity and composition of the milk it receives,
nest temperature and behavioral interaction with the mother
(25). Although the present study did not specifically measure
sleep–wake patterns, the present findings do confirm our pre-
vious studies, which demonstrated that artificial rearing does
not affect EEG spectral parameters, and extends those find-
ings to suggest that EEG spectral parameters are not affected
by neonatal nicotine exposure in this dose range. Landesman-
Dwyer et al. (30) noted that infants of mothers who smoke
heavily were less visually alert and slept in an atypical left-
oriented position, suggesting that these infants may have had
some impairment of their sleep–wake cycle, although in that
study no EEGs were obtained from the infants. In another
study, a trend toward a greater incidence of abnormal or bor-
derline EEGs was observed in the 6-year-old offspring of ma-
ternal smokers (13). What is not clear from these studies is
whether the EEG abnormalities observed in some nicotine-
exposed children reflects the presence of a general develop-
mental disorder, exposure to possible multiple drugs of abuse
or is a result of a toxic effect of nicotine on the systems that
generate the cortical EEG. However, studies evaluating the
effects of prenatal nicotine exposure on experimentally in-
duced seizures in rats have revealed that nicotine exposure
can increase susceptibility to electroconvulsive shock, suggest-
ing that nicotine may specifically cause alterations in the sys-
tems that modulate brain excitability levels (6).

The mechanism whereby nicotine may specifically alter the
brain substrates underlying the P3 response to stimuli is un-
known. Prenatal exposure to relatively high doses of nicotine
(6 mg/kg/day) causes growth retardation of the offspring,
which does not spare the brain, and impairs nervous system
development (42,43,52,53,59). Lower doses of nicotine also cause
abnormalities of cellular development, without affecting
growth, as assessed by measurements of ornithine decarboxy-
lase activity and DNA (43,60) and morphology of somatosen-
sory cortex (55). Further studies linking electrophysiology,
anatomy and behavior should provide a better understanding
of the potential harmful effects of perinatal nicotine exposure.
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FIG. 4. Effects of rearing condition [suckled control vs. artificially
reared (0 mg nicotine)] and nicotine exposure (1 vs. 4 mg/kg/day) on
EEG spectral parameters. There were no significant differences
across treatment groups on any EEG-dependent variable (i.e., mean
power density for any of the frequency bands) evaluated in any
recording site.
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